Petal

A kinetic sculpture in which recursive, rule-based morphogenesis is materialized as modular, tensegrity-like space-frames, and motion emerges from cable-actuated force equilibrium as materially induced, lifelike adaptation.



Petal is presented as a kinetic sculpture, supported by simulation and full-scale prototyping as evidence for its materially induced motion.




Petal is a kinetic sculpture developed through a nature-inspired, rule-based morphogenetic generative system, where kinetic expression is treated as a material generative process rather than a scripted mechanical performance. Recursive, self-similar modules form a foldable space-frame chain, enabling a sculptural language that bridges morphogenesis, constructable structure, and lifelike motion. The work foregrounds form–behavior coupling: the same rule space that generates geometry also conditions how the structure can transform through its material assembly.

The system begins with recursion and self-similar modularity: a foldable space-frame unit is iterated into an interlocking chain (seven connected units), with deformation shaped by constrained degrees of freedom and collision-limited joint folding. Motion is produced by a cable-actuated, spring-like network in which tension and compression are redistributed through the structure. Two continuous tendons function as global “muscles,” coordinating contraction and extension, while local joints negotiate self-weight and constraint. As posture shifts, load paths and effective stiffness change, yielding materially induced dynamics that remain legible as adaptive behavior rather than servo choreography.


Aligned views of the same morphogenetic system: (left) kinetic sculpture, (center) architecture-scale prototype, (right) physics simulation—showing how recursion becomes structure and cable actuation yields materially induced motion across scales.



Through three aligned representations—simulation, study models, and a full-scale prototype—so the same morphogenetic logic can be read consistently as geometry, as fabrication/assembly, and as kinetic behavior. Simulation supports the exploration of form variants and constraint-driven transitions; study models make the structural grammar and motion intelligible at an exhibited scale; the full-scale prototype validates constructability and force-mediated behavior across scale. This alignment clarifies how form–behavior coupling can be designed through constructable structure, not merely illustrated as an after-the-fact animation.





Petal contributes a cross-disciplinary workflow at the intersection of morphogenesis, wood fabrication, and material dynamics. It reframes “animation” as force-mediated behavior emerging from topology, constraints, and actuation layout—where skeleton and muscle are designed together, and motion is an outcome of structural logic and material compliance. By connecting recursive computational design with tensegrity-like assembly and cable-driven equilibrium, the work offers an approach for developing kinetic sculptures (and future architectural-scale experiments) in which aesthetic abstraction and form-finding are inseparable from how the artifact moves.


The project began as a Taiwan Lantern Festival commission, where the primary task was fabrication: realizing a morphogenetic, transformable timber system at architectural scale and validating its constructability through full-scale prototyping. In that context, the work operated as a kinetic pavilion that translated environmental sensing into spatial change—temperature, sunlight, and humidity were measured and mapped to shape-changing states and embedded lighting—so the structure could register ecological conditions as a slow public performance rather than a triggered interaction.



Location/
Hsinchu, Taiwan
Client/
Taiwan Lantern Festival
Artist, Director/
Scottie Chih-Chieh Huang
NTHU BLD/
Deng-Feng Jiang, Xin-Zhi Wu, Hsin-Fu Chen, Zong-Xi Li, Wen-Yu Chen
Manufacture/
Yumu Manufacture & Research
Photo/
FIXER Photographic Studio
Video Record/
Yanmin Li


---


概要
《動生態裝置》作品透過自行開發的數位設計與製造工具與構築方法(digital design and fabrication),將仿生媒體(biomimetic media)應用於空間框架(space frame)的生成與變形的探索中,發展在視覺藝術(visual art)領域中的運動美學表現、以及電腦輔助建築設計(CAAD)領域上可動結構的變形設計應用。該作品為台灣燈會在新竹委託製作,概念融合新竹在地性的養殖、農業議題,發展將環境資訊視覺化的藝術表現(燈光與形體變化)的機制,以傳達岀人類與自然生態應和平共存的省思。

內容與概念
新竹擁有「台灣矽谷」美名,在高科技產業發達的背後,過去曾造就重金屬排放影響沿海的環境生態的處境。新竹香山的牡蠣養殖產業已經有 100 多年歷史,但牡蠣銅含量卻曾一度高達世界平均值的 40 倍。 牡蠣是海洋中的天然濾水器,可以透過濾食淨化水源,對生態提供極高的生態服務 (Ecosystem Service)價值。反觀人類的建設卻多是對生態帶來危害,而生態失衡的結果也同時影響人類的生存。《動生態裝置》特別以演算法與木構構築技術發展衍生設計系統,使空間裝置呈現仿生性的形體,能透過形狀變形、自體發光的表現回應環境資訊,提醒人類與自然生態達成和平共存的省思。

該作品以數據驅動藝術 (Data-driven Art) 的角度,將生態環境的物理資訊作為感測與重現的對象,透過視覺化 (Visualization) 的表現,使裝置的結構形體產生變形(Shape-changing)和光源表現,藉此讓觀者察覺到周遭可視甚或不可視的物理資訊的變化。該裝置的形體,是一由動態結構系統研發而成的動態建築(Kinetic Architecture),運用電腦圖學領域的仿生運算 (Biologically-inspired Computing),從衍生設計的幾何、參數、連動關係等自我組織的規則制定,使之經過反覆迭代(Iteration)與遞迴(Recursion)的運算,衍生出具有有機體特徵的形體(Organic Form),以此,運用木構造發展具變形機能的建築雕塑。

結構系統研發
《動生態裝置》由五組猶如蕨類一般捲曲形狀的可相互組織的張拉整體結構系統 (Interconenctive Tensegrity Structure System, ITSS) 所構成,透過自我組織 (Self-Assembly) 與遞迴(Recursion)機制研究所發展的演算法,整合運用木構構築發展張拉整體結構 (Tensegrity) 的特性,發展的衍生造形系統,以此發展出仿生生長紋理的運動結構。一般時候,該運動結構會呈現整體向內捲曲的形狀,形成一個具包覆感的涼亭形態。該裝置設定有環境資訊的感測機制(氣溫、土壤濕度、環境噪音、日照等資訊),會依據資訊感測內容,協調控制不同捲曲程度的形體變化,呈現猶如海葵一般的緩慢擺動樣貌。  

研發上,透過在Rhino/Grasshopper將自我組織 (self-assembly) 與遞迴(Recursion)機制,開發木構變形結構設計的衍生系統。並從縮尺模型的實驗與測試中,理解變形設計的基本作動原則,並將之整合在衍生設計系統中的規則與參數設定,使得該系統可以自動生成各個元件(節點、可動接頭)的幾何形態,並產生合乎力學與結構限制的造形,該衍生設計機制亦能讓設計者更專注於變形美感與造形的表現下發展設計。

未來發展
發展建築尺度的動力藝術在製作上是具備挑戰的,開發出質量輕巧、又具備強大支撐性能的結構系統成為了唯一解法。而本《動生態裝置》創作正是以正這樣的方向,挑戰建築結構設計、視覺藝術等領域上存在的限制。因此,該創作採用建築發明家巴克敏斯特 · 富勒 (Buckminster Fuller) 提出的張拉整體結構 (Tensegrity) ,並透過運動關節的開發,賦予其可以自主變形的能力。張拉整體系統的發展是以仿生的觀點,觀察人體肌肉與骨骼的組成關係所發展而來。因此,在張力(棍棒型態的材料)與拉力(鋼索)個別作用的結構系統組合中,可以以輕巧的方式,用最少的材料資源,創建最大包覆面積的建築穹頂(Geodesic Dome),爲人類文明帶來創新。    

穹頂建築的發生,在人類文明上,總是代表一次次融合科學技術與藝術的革新。公元初期羅馬萬神殿(Pantheum)人類首創用磚塊與混凝土結合的工法蓋出的第一個正圓形穹頂;公元1436年,佛羅倫斯聖母百花聖殿 (Cathedral of Santa Maria del Fiore),建築師菲利波 · 布魯內萊斯基 (Filippo Brunelleschi) 將混凝土做成的穹頂空間,做了視覺藝術表現上最優美的詮釋。《動生態裝置》所在思考的是發展一種新的可模組化交互連接的可變形張拉木構系統。運用當代發達的數位科技與構築技術,開創可以型態變形的穹頂建築。該作品可視為「可動建築穹頂」創作的第一階段,未來將繼續發展利用演算法性能的數位設計工具,兼顧發展仿生有機造形狀、同時有效處理複雜的幾何加工在製程上的運算的方法。承襲建築發明家富勒提出的張拉整體,近一步發展可以自主張拉行變的建築穹頂結構。




All images and videos courtesy Scottie Chih-Chieh Huang.